New Enhanced Multi-frame DICOM CT and MR Objects to Enhance Performance and Image Processing on PACS and Workstations

SCAR 2004 Hot Topics - 22 May 2004

David Clunie, RadPharm

Charles Parisot, GE Healthcare

Kees Verduin, Philips Medical Systems

Bernhard Hassold, Siemens Medical Solutions

Greater Expectations

- Previously, users content with viewing + annotations
- Increasingly advanced applications
 - Hanging protocols, MPR, 3D, virtual colonoscopy
 - Perfusion, diffusion, functional MR, spectroscopy
 - Cardiac cine, CT and MR fluoroscopy
 - Lung CAD
- Such applications are often vendor-specific
 - Performed on console or same vendor's workstation
 - Depend on private attributes
- Want advanced application interoperability
- Support in multi-vendor PACS workstations
- Distributing "screen saves" on PACS insufficient

Why are new objects needed ?

- CT and MR objects more than 10 years old

 Technology on which they are based probably more than 15 years old
- Pre-date many technological advances

 Helical CT & fast spin echo pulse sequences
- Explosion in data set size -> performance ?
 Multi-detector CT and functional MR
- Expectations beyond simple viewing
 - Hanging protocols & advanced applications

New Multi-frame CT & MT

- Potential performance gain during transfer & loading
- Easier access to organized multi-slice data
- Preservation of intended semantics of acquisition (e.g. a volume set, a cine run)
- More extensive, up-to-date acquisition parameters
- Additional features for special acquisition and analysis types
 - color values, e.g. for functional data overlaid on structure
 - real world value mapping, e.g. ADC, velocity
- Specialized data interchange, and central archiving
 - Spectroscopy and raw data

Performance Opportunities

- New multi-frame object does not change
 - TCP connection establishment
 - Association establishment
- Common header information is not repeated
 - But reduction is negligible compared to pixel data size
- Reduced latency (delay) between storage requests
- Creates opportunity for inter-slice (3D) compression
- Extremely implementation-dependent

C-Store request

Dataset (attributes+pixels)

C-Store response (acknowledgement)

A s o c i a t i o n	UIDs UIDs UIDs UIDs Store, parse, check	
		C-Store request Dataset (attributes+pixels) C-Store response (acknowledgement)

A s o c i a t i o n	Image: store stor	
		C-Store request Dataset (attributes+pixels) C-Store response (acknowledgement)

A s o c i a t i o n	Image: store stor	
		C-Store request Dataset (attributes+pixels) C-Store response (acknowledgement)

CTA - 548x512x512 (275MB) File read/transfer/save (GB Ethernet)

Lossless JPEG 2000 Compression (Alexis Tzannes, Aware, 2003)

Slices in 3rd dimension

Organizational Features

- Multi-frame pixel data
- Comprehensive, mandatory, coded attributes
- Shared and per-frame functional groups
 Compact & makes explicit what doesn't change
- Dimensions
 - a priori hints as to how the frames are organized
- Stacks
- Temporal positions
- Concatenations
 - Reasonable size chunks, viewing in batches as acquired

Multi-frame Functional Groups

Shared attributes

Per-frame attributes

Pixel data

Concatenations

Shared attributes

Per-frame attributes

Pixel data

Robust Application Support

- More technique-specific attributes

 Majority of them mandatory for original images
- More technique-specific terms
 - Categorizing acquisition types
 - Describing acquisition parameters
- Less dependence on private attributes
- Better organization of data

Technique Attributes & Terms

	СТ		MR	
SOP Class	Original	Enhanced	Original	Enhanced
Attributes (Mandatory)	18 (0)	41 (39)	44 (2)	103 (94)
Terms (Enumerated)	4 (2)	86 (18)	38 (9)	228 (47)

CT Image Type Value 3

- Original SOP Class
 - AXIAL or LOCALIZER
- Enhanced SOP Class
 - Common to CT and MR
 - ANGIO, FLUOROSCOPY, LOCALIZER, MOTION, PERFUSION, PRE_CONTRAST, POST_CONTRAST, REST, STRESS, VOLUME
 - CT-specific
 - ATTENUATION, CARDIAC, CARDIAC_GATED, REFERENCE

Organization of Data

- Shared and Per-frame Functional Groups
 - Each functional group contains attributes that likely vary as a group, e.g. Pixel Measures, Plane Orientation, Velocity Encoding, etc.
- Dimensions
 - Specify intended order of traversal, such as space, then time (e.g., for cardiac cine loops)
- Stacks
 - Groups of spatially-related slices, repeatable
- Temporal Position Index

Dimensions

Start with a dimension of space.

A set of contiguous slices through the heart.

Organization of Data

- Goal is to reduce the work that the receiving application has to do to "figure out"
 - How the data is organized
 - Why it is organized that way
- Without preventing use of the data in unanticipated ways
 - E.g. 3D on a dataset not intended as a volume
- Two levels
 - The detailed shared & per-frame attributes
 - The overall dimensions, stacks and temporal positions

Color Information

Spectroscopy

Storage of Spectroscopy Data

Metabolite Maps

But when ?

Modality

PACS

NEMA Initiatives

- MR test tools, images and spectra available
- CT test tools and images in development
- Implementation testing & demonstration
 - In conjunction with SCAR
 - May 2004 call for participation
 - Dec 2004 commitment by vendors
 - Jun 2005 SCAR demonstration

Not Just MR & CT ?

- Need for new multi-frame PET object
 - Currently single slice
 - Much renewed interest in PET-CT fusion
 - To be assessed during SNM June 2004 meeting
- X-ray angiography work in progress
 - Support for digital detectors
 - New acquisition types
 - Tomosynthesis

Summary

- Primary goal of new CT & MR objects is to support inter-operability of advanced applications
 - between multiple vendors
 - between modalities, workstations & PACS
- New objects simplify the task of a receiving application by providing guidance through multidimensions
- Adoption requires commitment by modality, workstations and PACS vendors
- DICOM, NEMA & SCAR promoting collaboration