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Implementation Experience
• Test objects

– Test images & spectroscopy objects

– Creation from existing single frame bulk data

– Synthesis of multi-frame & technique attributes

• Test tool
– Annotation, grayscale pipeline & multi-frame navigation

– Display of spectra

• Validation
– Challenges of verifying complex nested conditions

– Use of XSL-T and Xpath for definition/execution



Creating Test Objects

• Requirements specify range of attributes, functional groups
– Minimal (barely compliant)
– Comprehensive (to exercise most complex compliance)

• Could have used
– Purely synthetic pixel data
– Automatically generate many possible attribute sets

• Disadvantages
– Really boring to look at (esp. for clinicians, physicists)
– Would not demonstrate the application advantages of the new object

• Approach chosen
– Realistic examples whenever possible
– Achieves not only mechanical conformance with the standard
– Ensures plausible and internally consistent values for attributes



Creating Test Objects

• Requirements were specified as sets of images
– Based on which object features were in use

• Various clinical, research, demonstration and vendor supplied single
frame data sets were examined to assess
– Feasibility for building the new object attributes based on the old
– Scenarios that exercised the various object features (e.g. color, real world

values, rescale attributes)
– Scenarios that were suitable to demonstrate the new application areas that

were poorly supported in the old object (functional imaging, motion
imaging, cardiac imaging)

• Where no source data was available
– Likely sources harassed (vendors, colleagues, researchers)
– Pixel data synthesized (e.g., McGill Brain Simulator on the web)



Creating Test Objects
• Given

– a large collection of single frame old MR objects
– how to make new enhanced multi-frame MR objects out of them ?

• Adapted crude tools (dccp and dcmulti from dicom3tools )to:
– Modify while copying single frame source images to

• Cleanse demographics and identifying attributes
• Set dates and times appropriately
• Clean up inappropriate or buggy old MR object attributes
• Add appropriate new MR object attributes as necessary

– Sort input images based on specified criteria
– Collect all source attributes to be mapped and determine whether varying

on a “per-frame” basis or not
– Map old attributes into new (or synthesize them as necessary)
– Group into functional groups and decide whether shared or per-frame
– Add temporal position index and dimensions as requested
– Concatenate pixel data from multiple files into one (7FE0,0010)



Lessons Learned

• Re-using the old objects is not as easy as it sounds
– Old attributes poorly defined as to their meaning, or the meaning of

defined terms

– No standard old attributes to correspond to new attributes

– Even with extensive use of private attributes as the source, still many gaps

– Some consistently buggy attributes from various vendors were worked
around by hand - not obvious if there is a robust general solution to some
of these

• MR equipment vendors using this approach to bring forward legacy
systems will find gaps in what is currently being stored internally

• Third-party vendors wanting to retrofit installed base will have trouble
generating truly compliant new objects - will have to be fairly creative



Particular Difficulties
• Describing phase encoding steps

– In-plane

– Out-of-plane

– Using Acquisition Matrix vs. Number of Phase Encoding Steps

– Had to resort to private attributes a lot

– Often had to override by hand with “likely” values anyway

• Magnetic Field Strength and Imaging Frequency
– Just encoded incorrectly by many scanners

• Building Acquisition and Reference date and time and duration attributes
– Difficult to know just what is meant by what is encoded in Image (Content) and

Acquisition date and time attributes in old images

– Overrode manually in many cases

• Contrast Bolus module contents
– Truly hopeless in most old images, since operator entered free text (including “none”)

– Overrode manually in many cases



More Straightforward Mapping
• Anatomical codes

– Fairly easy when standard defined terms for Body Part Examined were used -
direct mapping to SNOMED codes

– Often not filled in by scanners

– Manually override Body Part Examined in source and let tool map to coded
equivalent

• Receive and Transmit coils
– Generated automatic mapping to coded values based on commonly

encountered strings found in various vendor’s source images

• Image Type, etc.
– Mapping the old Image Type, Scanning Sequence, Sequence Variant, and

Scan Options provided a good basis for initial values for many new technique
related attributes

– Still ended up overriding many manually to get more realistic values



Creating Dimensions
• From a display perspective dimensions are great

– Clear instructions on order in which to render
– No understanding necessary of

• meaning of attributes
• their natural sort order

• Places greater burden on the object creator
– Choice of which attributes (or entire functional groups) to use as dimensions
– In which order to specify dimensions
– For a particular dimension, how to sort that attribute (or functional group)

• Easy for single-valued attributes with monotonically increasing values, like
Temporal Position Index

• String values - does DERIVED come before or after ORIGINAL ?
• Multiple valued attributes - ignore or use which values ?

– Probably considerably easier for an “application” generating images that
“understands” what is intended, as opposed to a mechanical test or
conversion tool



Implementation Experience
• Test objects

– Test images & spectroscopy objects

– Creation from existing single frame bulk data

– Synthesis of multi-frame & technique attributes

• Test tool
– Annotation, grayscale pipeline & multi-frame navigation

– Display of spectra

• Validation
– Challenges of verifying complex nested conditions

– Use of XSL-T and Xpath for definition/execution



Test Tool - DicomImageViewer

• Goal is to meet requirements of evaluating and
experimenting with new MR object, not to
replicate complete workstation functionality

• Correspondingly simple - single image display
panel with simple annotation and navigation
features

• Emphasis is on highlighting new features of MR
object - multi-frame characteristics and use of
dimensions



Overview of Functionality

• Read images, spectroscopy objects, DICOMDIR from files

• Receive/send images/spectroscopy objects across network

• Query/retrieve images/spectroscopy objects across network

• Display multi-frame images/spectra in implicit and by
dimension order

• Display values of common, shared and per-frame varying
attributes

• Export objects into a readable (XML) form



Design Decisions - Platform

• Emphasize portability over performance
• 100% Pure Java

– Portable across Windows, Linux, Solaris, Mac OS X, etc.
– JRE 1.3.1 or greater
– On a fast PC with adequate memory, sufficient to display multi-

frame objects of 512x512 of several hundred MB in size
– Takes advantage of Java internationalization - supports all DICOM

character sets
– Not yet ported to 1.4.1 or using Java Advanced Imaging or Java

Image I/O - significant performance improvements expected -
awaiting Mac OS X adoption of 1.4.1



Design Decisions - Toolkits

• Re-use of existing freely available Pure
Java components:
– Hypersonic SQL database

– Sun XML pack

– PixelMed Publishing DICOM toolkit (parsing,
network, display code)



Implementation Challenges

• Annotation of attributes varying per-frame

• Convey overall “view” of what is in object

• Handle presence of “dimensions”

• New pipelines - color, real world values

• VOI LUT issues - varying per-frame

• Large size of images: hundreds of frames

• Spectroscopy



Annotation

• How to annotate hundreds of attributes that may vary per
frame ?

• A real workstation would try to decorate the displayed
image tile

• Tool uses separate scrolling window containing all the
attributes present in the object

• Those in the “top level” dataset or the shared functional
group sequence item are constant

• Those in (any of) the per-frame functional group sequence
items are updated dynamically as the frames are scrolled



These are fixed
for all frames

Change as frames
are scrolled 



Overall View

• With hundreds of attributes vary per frame, how can one convey a
sense of what is going on ?

• Tabular representation of only those attributes that vary on a per-frame
basis, like a spreadsheet

• Limitations: as long as there is a meaningful “single value” to be
displayed for each frame, this is easy; however, when there are lists of
multiple values for a single frame the tool currently shows just the first
(e.g. for list of SAR values)

• Additional features requested:
– Sorting by columns

– Sorting by dimension index values





Dimensions

• Dimensions are used to convey from the object creator how the frames
could or should be ordered for display

• Default order applied by tool is implicit order of frames as encoded in
the Pixel Data attribute

• User may toggle between sorting by implicit order or dimension order

• No limit to the number of dimensions

• No need to “understand” natural sort order of attributes that are the
target of the dimension indices … the indices are explicitly conveyed
(i.e. the sorting is done by the object creator)

• Applies to both images and spectroscopy objects

• Trivial to implement … just de-reference the frame indices through an
array with a pre-computed order based on sorted dimension indices



Scrolled to
1st “frame”

Implicit order
selected

Really is
frame 1

Dimension Index
Values Ignored



Scrolled to
1st “frame”

Dimension order
selected

Really is
frame 56

Dimension Index
Values now used

Dimensions, in
order used

Actual dimension values



Pipelines

• Basic grayscale pipeline is same as usual
– Modality LUT - always linear (no LUT)
– VOI LUT - always center/width (no LUT)

• Supplemental palette color
– Use “high” pixel values as index into supplied LUT and

ignore during interactive windowing

• Real-world value mapping
– Interactive display of pixel under cursor piped through

one or more transformations as supplied, and display
Code Meaning of supplied units
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Pipelines
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VOI LUT Issues

• Traditionally, DICOM objects have either:
– No VOI LUT at all included
– One or more linear window center/width sets
– One or more LUTs (esp. for CR and DX)

• New MR object allows (but does not require)
– One or more linear window center/width sets only - no LUTs
– May vary per-frame or be in shared functional group

• Implementing this:
– Need to have meaningful (statistical) default in case absent
– Ability to select and apply VOI values supplied for each frame
– No need to support LUTs

• Current tool behavior
– Use first window pair from each frame as frames are scrolled (not selectable)
– Use mean of actual pixel values as center, actual range as width, if none
– If user adjusts window, applies to all frames (overrides any VOI values)



Large size of images

• Multi-frame images may get really large
– Single huge file
– Concatenations to be viewed as a whole

• Current viewing tool is very memory extensive
– Maintains in memory both source pixel data and transformed

pixels for current frame (rescaled, windowed, resized and
platform-appropriate buffer for repainting)

– Grabs really huge heap sizes at invocation (e.g., 512MB)
– If heap requested is really in OS virtual memory (exceeds physical

memory), will thrash horribly

• In future, use of memory-mapped file feature of Java may
allow for much larger images



Spectroscopy

• What is “spectroscopy” anyway ?
– Very new to most image and DICOM engineers
– Floating point and/or complex values
– Stored as arrays like rasters, but not pixels
– Need to be represented as graphs against a frequency axis
– May be 1D data for a single or multiple “voxels” (areas in space)
– May theoretically be 2D with something else other than frequency

as the other dimension (rare in clinical use)

• Test tool support:
– Single/multi-voxel 1D display: graph of stored value vs. frequency
– Need to be related back to physical location by reference to

structural images - a feature to be added in Phase 2



Frequency axis

Stored value axis

One voxel



Implementation Experience
• Test objects

– Test images & spectroscopy objects

– Creation from existing single frame bulk data

– Synthesis of multi-frame & technique attributes

• Test tool
– Annotation, grayscale pipeline & multi-frame navigation

– Display of spectra

• Validation
– Challenges of verifying complex nested conditions

– Use of XSL-T and Xpath for definition/execution



Validation

• Principles of operation

• Design decisions

• Preliminary experience
– Actual errors encountered in sample images

– Unexpected consequences of the details of the
standard

– Limitations of the validation tool design



Principles of Operation

• Convert XML IOD definition into XSL-T rules
– Also performed using  XSL-T

• Convert DICOM into XML attribute descriptions

• Apply XSL-T rules to XML attribute descriptions

• Output is a report listing deficiencies



Principles of Operation
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Design Decisions, Consequences

• Why XSL-T ?
– Previous experience with hard-coded (C++) validator

– Primary difficulty - describing complex conditions
• Presence or absence of modules, macros, attributes

• Paths to attributes included in conditions

• Adding “ad hoc” verification rules derived from text descriptions

• Handling “may be present otherwise … only if” checks

– Non-standard template input format driving the C++ validator
grew more and more complex with ad hoc extensions

• New MR object has very complex conditions, especially
between nested sequence attributes



Design Decisions, Consequences

• Form of XML representation of IOD
– Ideally would be automatically generated from

published XML description of DICOM (which
doesn’t yet exist) - for now, typed in by hand

– IODs, Modules, Macros, Attributes

– Conditions

– VR and VM of every occurrence of an attribute



Design Decisions, Consequences

• Conditions
– Mandatory modules, macros and attributes easy

– Conditional and user optional - not so easy
• Verifiable conditions - e.g., ImageType value 1 = ORIGINAL

• Real-world conditions - e.g., contrast administered

• Is module/macro/attribute actually present anyway, and hence
needs to be checked ? - e.g.,  if any (mandatory ?) attributes of
a module are present, module is present (and hence checked)

• Strong desire to use Xpath to build conditions



Xpath rules
• XSL-T “navigates” using Xpath expressions:

– value of a sibling attribute:
BitsAllocated /value[@number=1] = 16

– path relative to current location:
../../MRImageFrameTypeSequence/Item[@number=1]

/FrameType/value[@number=1]='ORIGINAL'

– absolute path from the root:
/DicomObject/EchoPulseSequence/value[@number=1]='GRADIENT’

– occurrence at any depth:
count(//ReferencedImageSequence) &gt; 0



XML Format Decisions

• Need to represent the DICOM instance in XML prior to
validating with XSL-T rules

• Fairly straightforward transliteration
– Names of DICOM data elements as XML element names
– Group/element tag included but not used in validation
– VR always included (either from explicit transfer syntax or

dictionary used during conversion)
– Values (and sequence items) explicitly numbered - makes XSL-T

considerably simpler (e.g. to validate defined terms applicable to a
particular value only, such as with Image Type)

– Attribute values themselves included as text of <value> element,
with binary values (floats, integers) converted to text first



What to validate ?

• Value Representation
– Matches dictionary

– Value valid for VR (hard with XML intermediate form)

• Value Multiplicity

• Presence/ or absence of modules, attributes

• Defined terms and enumerated values

• Additional constraints specified in text in standard



Preliminary Experience

• Typical example of output:

Error: PatientModule/PatientID/: PatientID: Incorrect VR - got CS but expected LO

Error: PatientModule/PatientID/: PatientID: Incorrect value multiplicity - got 2 but
expected 1-1

Error: ImagePixelModule/SamplesPerPixel/: SamplesPerPixel: Must be 1 when
PhotometricInterpretation is MONOCHROME2

Warning: ImagePixelModule/SamplesPerPixel/: SamplesPerPixel: Unrecognized defined term 2

Error: ImagePixelModule/PlanarConfiguration/: : Missing conditional attribute



Output Format

• Where in the IOD is the error ?

Error: PatientModule/PatientID/:

• Where in the Instance is the error ?

PatientID:

• What is the nature of the error ?

Incorrect VR - got CS but expected LO



Output Format

• Where in the IOD is the error ?
PlanePositionMacro/PlanePositionSequence/ImagePositionPatient/

• Where in the Instance is the error ?

PerFrameFunctionalGroupsSequence/Item[32]/
PlanePositionSequence/Item[1]/ImagePositionPatient

• What is the nature of the error ?
Conditional attribute present when condition not satisfied



Unexpected Consequences

• Interaction of Shared vs. Per-frame
functional groups and conditions based on
top-level attributes

• When is a particular functional group
required ?

• Does it vary per-frame or not ?



Functional Group problems

• Example of a legitimate problem: CARANGIO
image
– Validator complains that no MR Spatial Saturation Sequence is present in

any of the per-frame functional group items, nor is it present in the shared
functional group item

– The Spatial Presaturation (top-level) attribute has a value of SLAB, which
triggers the condition for the presence of the MR Spatial Saturation
Functional Group Macro

• Conclusion:
– Error in constructing the image; the MR Spatial Saturation Sequence

should have been included with no Items (zero-length Type 2 sequence),
rather than being omitted completely - i.e., the semantics are that though
sat slabs were used, the information about their locations is “unknown”



Functional Group problems

• Example of a problem: CARANGIO image
– Validator complains that MR FOV/Geometry Sequence is missing in first

13 per-frame functional group items (it is present in the rest)
– The Frame Type of these “bad” items is DERIVED, whereas the rest are

original
– The standard condition is predicated on Geometry of k-Space Traversal

being RECTILINEAR (a top-level attribute), and the Image Type being
ORIGINAL or MIXED, all of which are satisfied

– Yet, clearly for a MIXED Image Type it is possible to have DERIVED
frames, for which the MR FOV/Geometry Sequence is not meaningful and
shouldn’t be included

• Conclusion
– Error in the standard ? Symptomatic of mixed frames in general ?
– Arbitrary prohibition on the kind of object that can be constructed ?



Mixing “old” & “new” problems

• Example of a problem: all test images
– Validator complains that Laterality in the General Series module has an

illegal enumerated value (i.e. the empty string that is the zero length
value)

– In the new MR object, laterality is specified in the per-frame Frame
Anatomy macro as Frame Laterality

– There was no modification of the condition on the inclusion of Laterality
in General Series to account for this

• Conclusion
– Error in the standard - clearly the condition on Laterality should be

modified (as it was when DX Image Laterality was added)
– General question though - is zero length a legitimate enumerated value for

a Type 2 or 2C attribute ? Yes, therefore validation rules flagged this
incorrectly !



Mixing “old” & “new” problems

• Example of a problem: all test images
– Validator complains that Pixel Aspect Ratio is missing from the Image

Pixel Module
– Pixel Aspect Ratio’s presence is conditioned by the presence of the Image

Plane Module
– In the new MR object, the equivalent of the Image Plane module is moved

down into functional group macros that may vary per-frame
– There was no modification of the condition on the inclusion of Pixel

Aspect Ratio in Image Pixel to account for this

• Conclusion
– Error in the standard - clearly the condition on Pixel Aspect Ratio should

be modified and a CP is needed
– In the interim, it would be inappropriate to start including Pixel Aspect

Ratio in images just because the validator complains



Limitations of the Tool

• Potentially verifiable but complex conditions not yet implemented
• Real-world conditions are not validated

– Some conditional modules validated only when evidence of their presence
– Could have synthetic “pre-conditions”, either manually set as preferences,

or all possibilities automatically explored

• Limited potential for validation of attribute values against VR
limitations … conversion to XML impacts this
– E.g., it is easier to validate character lengths of national character sets

(since already converted to Unicode), but there may be some
canonicalization of spaces, etc.

– This really should be done in the DICOM to XML translation step

• No validation of contents or length of bulk data
– Bulk data (such as  pixel data, spectroscopy data and LUTs) are not

included in the XML translation



Value of the Tool

• Obviously the tool can only check mechanically against the standard

• Can not actually “understand” the contents of the image object

• I.e. does it really make “sense” in the entire context of the acquisition ?

• Not a real problem - presumably, vendors of real rather than test
images will only build objects that have meaning since they reflect
actual acquisitions and processing results

• Primary value of the tool - protect against trivial programming errors
(e.g. defined term spelling mistakes, empty items, missing attributes,
etc.) that are known to be common and do affect interoperability



Conclusion
• Test objects

– Hardest part of building the objects was gathering enough good samples !

– Conversion of existing single-frame objects on a routine basis is not as easy as might be
expected by some

• Test tool
– Nothing particularly challenging about the new object

– The large size of the new images is a feature of the application requirement - it would be
the same regardless of whether images are stored as single or multiple frames

– New object contains many mandatory and otherwise useful features that make display
easier, not harder

• Validation
– Greatest difficulty is in verifying complex nested conditions

– Use of XSL-T and Xpath proved to be a good choice because of this

– Experience using this and earlier validators helped cleaned up the test images

– The exercise of translating the standard into conditions and tests in the validator exposes
inconsistencies or weaknesses in the standard, though most of these are relatively minor


